Вопреки расхожему мнению о том, что индивидуальное развитие есть реализация заложенной в геноме «программы», ранние стадии эмбрионального развития животных идут при отключенном геноме. Вплоть до стадии бластулы или даже зародыш синтезирует все необходимые ему белки на основе матричных РНК, полученных от матери. Когда гены зародыша наконец начинают работать, материнские РНК уничтожаются. Механизмы и биологический смысл этих явлений остаются во многом загадочными. Принято считать, что индивидуальное развитие онтогенез) — это постепенная «реализация» той генетической информации, которая заключена в геноме оплодотворенной яйцеклетки зиготы) и которая в итоге окончательно «воплощается» в строении взрослого организма.

Все понимают, что путь от генотипа к фенотипу труден и извилист, но лишь немногие эволюционисты всерьез пытаются объяснить ключевые закономерности эволюции особенностями тех сложнейших процессов самоорганизации, которые составляют суть онтогенеза (уж слишком трудна задача). Поэтому обычно проблему пытаются упростить, сведя всё к вопросу о том, каким образом те или иные изменения генотипа (например, случайные мутации) могут отразиться на процессе развития зародыша.

Согласно традиционным взглядам, геном рассматривается как активное начало (в нём всё изначально «закодировано», он «руководит» развитием). Развивающийся зародыш, напротив, считается чем-то вроде пассивного «результата» деятельности генома. Дело несколько осложняется тем обстоятельством, что сам геном в процессе онтогенеза явно находится под контролем: в разных клетках эмбриона одни гены включаются, другие выключаются в строгой последовательности, определяемой, в частности, химическими сигналами, которыми обмениваются между собой клетки и ткани зародыша. Кто кем управляет, становится не совсем ясно. Некоторые теоретики по этому поводу даже заявляют, что геном — это не «программа развития зародыша», а скорее некий набор инструментов, которыми зародыш пользуется (или не пользуется) по своему усмотрению.

Для управления собственными генами зародыш использует множество разных механизмов: это и регуляция транскрипции (считывания генов) при помощи малых РНК и специальных регуляторных белков — транскрипционных факторов (знаменитые HOX-гены тоже кодируют транскрипционные факторы), и особые «эпигенетические» механизмы (см. С. А. Назаренко. Эпигенетическая регуляция активности генов и ее эволюция), в том числе метилирование генов при помощи специальных ферментов ДНК-метилтрансфераз и ацетилирование гистонов — белков, на которые «намотаны» молекулы ДНК. В отличие от обычных регуляторов-переключателей, «эпигенетические» часто передаются по наследству от родительской клетки к дочерним, то есть их положение (вкл./выкл.) может сохраняться неизменным в ряду поколений делящихся клеток.

Еще одно обстоятельство, которое делает сомнительным тезис о полной и однозначной обусловленности онтогенеза геномом зиготы, состоит в том, что у подавляющего большинства многоклеточных животных на ранних стадиях развития геном вообще не функционирует. Он просто-напросто отключен, все гены молчат и матричные РНК («считываемые» с генов матрицы для синтеза белка) не производятся.

Типичная гаструла многоклеточного животного. A — эктодерма (наружный зародышевый листок), B — бластоцель (первичная полость тела), C — первичная кишка, D — энтодерма (внутренний зародышевый листок), E — бластопор (первичный рот). Фото: Dr. Anna E. Ross, Christian Brothers University, TN (с сайта coris.noaa.gov) Типичная гаструла многоклеточного животного. A — эктодерма (наружный зародышевый листок), B — бластоцель (первичная полость тела), C — первичная кишка, D — энтодерма (внутренний зародышевый листок), E — бластопор (первичный рот). Фото: Dr. Anna E. Ross, Christian Brothers University, TN (с сайта coris.noaa.gov)

Зародыш между тем претерпевает сложные превращения. Яйцеклетка начинает дробиться, число клеток эмбриона растет в геометрической прогрессии: 2, 4, 8, 16, 32... Наконец формируется однослойный шар из клеток (бластула). Клетки, находящиеся на одном из полюсов бластулы, мигрируют внутрь, давая начало второму зародышевому листку (энтодерме), из которой позже разовьется кишечник. На этой стадии двуслойный зародыш называется гаструлой. Только на этом этапе у многих животных начинают наконец включаться гены, унаследованные от папы с мамой. У других это происходит чуть раньше — на стадии бластулы. И только млекопитающие — группа уникальная во многих отношениях — включают свои гены еще раньше (например, мышь делает это на стадии двух клеток).

Как удается эмбриону развиваться без всякого «генетического контроля» вплоть до стадии гаструлы? Почему гены зародыша так долго остаются выключенными? Какие механизмы обеспечивают отключение генов в зиготе, а затем их своевременное включение? Обзорная статья, опубликованная в журнале Science, рассказывает о последних достижениях ученых, пытающихся разгадать эти загадки.

Ответ на первый вопрос более или менее ясен. Яйцеклетка содержит большое количество матричных РНК, унаследованных от материнского организма. Эти мРНК считываются с материнских генов заблаговременно, в процессе созревания яйцеклетки. Именно они обеспечивают синтез белков, необходимых для ранних стадий онтогенеза. В определенный момент материнские мРНК начинают уничтожаться. Это происходит как раз тогда, когда зародыш начинает сам производить мРНК, то есть включает свои гены. Этот довольно быстрый процесс замены зародышем материнских мРНК на свои собственные называется maternal-zygotic transition (MZT).

Менее ясен вопрос о том, что движет процессом MZT. Предполагается три возможных механизма:

  1. По мере роста числа клеток в зародыше начинает не хватать тех веществ (что бы они из себя ни представляли), которые не позволяют генам зародыша включиться. Ранние стадии эмбриогенеза животных не случайно называют «дроблением»: зигота именно дробится, клетки эмбриона после каждого деления становятся всё мельче, поскольку между клеточными делениями отсутствует стадия роста клеток. Общее количество цитоплазмы не растет, тогда как количество клеточных ядер, а следовательно и ДНК, увеличивается в геометрической прогрессии. Если предположить, что яйцеклетка заранее запаслась какими-то ингибиторами транскрипции, то количество этих гипотетических ингибиторов, приходящихся на каждую клетку, должно быстро убывать, и в конце концов их остается так мало, что они уже не могут сдерживать транскрипцию.
  2. Не исключено, что в зиготе изначально имеет место целенаправленное блокирование некоторых ключевых генов, работа которых инициирует транскрипцию. Так, показано, что искусственное введение в эмбрион мощных активаторов транскрипции (например, так называемого ТАТА-связывающего белка, TBP) может вызвать преждевременное частичное включение эмбрионального генома.
  3. Наконец, сама по себе быстрая череда клеточных делений может мешать транскрипции. Ведь каждому делению должно предшествовать удвоение ДНК (репликация). В ходе дробления репликация должна происходить, по сути дела, непрерывно. Между тем известно, что репликация может мешать транскрипции, а во время клеточного деления (митоза) может происходить обрыв и уничтожение тех мРНК, синтез которых еще не закончился. Может быть, клетки эмбриона просто физически не успевают транскрибировать свои гены? Искусственное замедление процесса дробления действительно может вызвать преждевременное включение эмбрионального генома. Кстати, у млекопитающих дробление протекает сравнительно медленно, не этим ли объясняется раннее включение генов зародыша?

Впрочем, ни одна из этих теорий не объясняет всей совокупности имеющихся фактов. Например, они не в состоянии объяснить, почему эмбриональные гены включаются постепенно, в строго определенном порядке, а единичные гены могут быть включены уже на самых ранних стадиях дробления.

Вторым существенным аспектом MZT является уничтожение материнских мРНК. Тут, как выяснилось, всё предусмотрено заранее: материнские мРНК помечены особой последовательностью нуклеотидов, расположенной на нетранслируемом (то есть не кодирующем белок) «хвостике» этих молекул. Среди первых генов, которые эмбрион включает в процессе MZT, находятся гены особых белков и маленьких РНК, которые распознают эту последовательность, прикрепляются к ней и тем самым инициируют уничтожение материнских мРНК.

До полного понимания всех этих процессов науке еще очень далеко, но дело движется. Когда основные механизмы генной регуляции в ходе раннего онтогенеза будут расшифрованы, биологи смогут вплотную заняться следующим принципиальным вопросом, а именно: зачем всё это надо? почему многоклеточные животные не доверяют своему геному контроль над ранними стадиями развития, а потом в какой-то момент вдруг «переключаются» с материнских транскриптов на свои собственные?

Между прочим, данная проблема имеет не только теоретическое, но и практическое значение. Трудности, с которыми сталкиваются работы по клонированию животных, во многом определяются тем, что мы еще слишком мало знаем о работе генов в ходе раннего развития. Клонирование животных осуществляется путем пересадки ядра из соматической (неполовой) клетки одного животного в яйцеклетку другого. Однако для нормального развития необходимо, чтобы гены зародыша поначалу помалкивали, а они в донорском ядре вполне активны. Цитоплазма яйцеклетки должна каким-то образом «перепрограммировать» ядро, выключить геном, а потом в нужный момент снова включить его. Пока мы не знаем, как ей в этом помочь, больших успехов в клонировании ожидать трудно.

Источник : Alexander F. Schier.

The Maternal-Zygotic Transition: Death and Birth of RNAs // Science. 2007. V. 316. P. 406–407.
Источник : www.elementy.ru
(Александр Марков)

Ещё в разделе

Тяжелая наследственность

Наследственные заболевания, связанные с мутациями - ошибками и нарушениями в геноме человека, относятся к числу наиболее трудно излечимых. Действительно, как приниматься за лечение, если оно таится в самой основе всех клеток? Однако первые шаги в этом нап

Генетически модифицированная капуста будет содержать вакцину от полиомиелита

Пока для достоверного эффекта белки нужно выделять из растения, однако в будущем можно будет вакцинироваться, просто поев капусты или салата.

От рака защищает особый ген

Китайские ученые смогли идентифицировать вариант гена, который, по их мнению, защищает китайцев от различных типов раковых заболеваний.

Расшифрован геном макака-резуса

Международный консорциум исследователей NIH/National Human Genome 13 апреля опубликовал последовательность генома макака-резуса (Macaca mulatta) и сравнил его с геномами шимпанзе (Pan troglodytes) и человека (Homo sapiens). Анализ показывает, что геномы и

Память улучшает генетическая мутация

Канадские ученые обнаружили генетическую мутацию, которая способствует улучшению долговременной памяти.

Учёные из Великобритании хотят использовать межвидовое клонирование

Три группы учёных из Великобритании хотят получить разрешение на эксперименты, связанные с межвидовым клонированием. Основная их цель, - обеспечить свои исследования нужным количеством яйцеклеток (для последующего получения эмбрионов и стволовых клеток) б

Корейцы клонировали волков

Южнокорейские учёные, некогда возглавляемые исследователем стволовых клеток Хван Ву Суком, который был уличён в подделке результатов эксперимента, заявили о том, что им удалось впервые в мире клонировать волков, сообщает Reuters.

Овца на одну шестую превратилась в человека

Американской овце удалось превратиться в человека. Правда, всего на 15%, да и участь ее незавидна: ее печень, скорее всего, пересадят человеку. Впрочем, до реальной технологии пересадок еще далеко, да и подобные работы в большинстве стран запрещены.

Генетики создали эмбрион человека-моркови

Российским ученым уже сейчас по силам создавать биогибриды людей с животными и даже растениями.

Зависимость от наркотиков может определяться генами

Сегодня ученые выдвинули версию, что наркоманами рождаются, а не становятся. В результате исследования установлено, что центральная нервная система некоторых людей предрасположена к появлению зависимости от психостимуляторов.

Решена одна из величайших загадок биологии

Решена одна из величайших загадок биологии

Международная группа ученых впервые обнаружила механизм, который контролирует репликацию (удвоение) молекулы ДНК.

Ген кролика помог комнатному растению эффективней очищать воздух

Ген кролика помог комнатному растению эффективней очищать воздух

Ученые из Вашингтонского университета установили, что ген кролика, вставленный в геном комнатного растения, значительно увеличивает его способность поглощать из воздуха вредные для здоровья примести: бензол и хлороформ.

Способны ли клеточные органеллы нагреваться?

Способны ли клеточные органеллы нагреваться?

Группа ученых, в которую вошли представители из нескольких стран смогли осуществить сложный эксперимент. Речь идет об измерении температуры митохондрий в живой клетке. Результаты исследования показали, что температура органелл в процессе работы составляет 50 градусов.

Растения, словно люди, способны устанавливать приоритеты

Растения, словно люди, способны устанавливать приоритеты

Результаты нового исследования показали, что растения, в случае нападения вредителей в первую очередь защищают цветки, а не листья, как было принято считать до настоящего момента. Кроме того, также стало известно, что при одновременном нападении гусениц, тли и патогенных бактерий, главным врагом по определению растения становится гусеница и, именно против нее, прежде всего, активируются защитные механизмы.

Первый полусинтетический организм – миф или реальность

Первый полусинтетический организм – миф или реальность

Научным сотрудникам из института Scripps удалось осуществить уникальный эксперимент. Суть исследования состояла в создании новых нуклеиновых оснований с дальнейшим их вживлением в ДНК. В результате проведения эксперимента генетики создали первую в мире полусинтетическую бактерию.

Теперь и аллигаторы смогут летать

Теперь и аллигаторы смогут летать

Благодаря длительным исследованиям ученые смогли определить гены, которые отвечают за формирование чешуи у рептилий и перьев у птиц. Полученная информация дала возможность вырастить эмбрионы аллигатора с измененными внешними покровами. Конечно, достигнуть положительного результата удалось только при посредстве генетических манипуляций.

В теле нематод выявили уникальный ген

В теле нематод выявили уникальный ген

Специалисты из Калифорнийского университета выяснили, что в нематодах Caenorhabditis elegans присутствует ген, несущий ответственность за кодирование вредного для червя токсина. Ген не считается полезным для червя и не исчезает в процессе естественного отбора, так как отвечает еще и за синтез противоядия, которое необходимо для выживания потомства в теле матери.

Найдены новые микроорганизмы с новым механизмом адаптации

Найдены новые микроорганизмы с новым механизмом адаптации

Американские ученые смогли обнаружить ряд ранее неизвестных организмов, которые постоянно мутируют. Склонность к постоянной мутации зависит от генетического механизма, называемого регенерирующим разнообразием ретроэлемента.

Генетики раскрыли механизм эволюции бактерий

Генетики раскрыли механизм эволюции бактерий

Ученые из Института Броуда и Гарвардского университета смогли найти мутации, которые стимулируют появление бактерий с уникальными свойствами. В частности речь идет об устойчивости к антибиотикам разного типа. Более того, такая устойчивость позволяет микроорганизмам провоцировать неизлечимые патологии.

Американцы создали асоциальных муравьев

Американцы создали асоциальных муравьев

Американские ученые из Рокфеллеровского университета смогли создать уникальных муравьев. В частности речь идет о генетически модифицированных насекомых, которые избегают своих сородичей. Благодаря своему творению, исследователи выяснили, что взаимодействие муравьев между собой, а затем дальнейшее формирование колонии происходит при посредстве обонятельных рецепторов, находящихся в усиках.

Оценка:

Пока комментариев нет