Шелкопряд помог сплести исчезающее оптоволокно

Коконы тутового шелкопряда – уникальная находка человека, обеспечившая ему появление нежной и роскошной ткани. Однако американские учёные нашли прочному и натуральному волокну другое применение. После несложной обработки его можно использовать в качестве оптических устройств, применение которых поможет медицине безопасно контролировать многие процессы в живом организме.

Коконы тутового шелкопряда доставляют в Америку из Японии. Большинство из них уходит на производство шёлковых тканей и одежды, однако часть достаётся и научным группам.

Биоинженер Фьоренцо Оменетто (Fiorenzo Omenetto) из американского университета Тафтс однажды задумался над другими возможными применениями прочных белковых волокон, которые навивают вокруг себя гусеницы.

Идея создания оптических устройств на основе шёлка появилась у Фьоренцо, когда он вёл совместную работу со своим соседом по этажу профессором Дэвидом Капланом (David Kaplan), занимающимся созданием из белков шёлка различных каркасов для биологических тканей.

Оменетто, будучи физиком, быстро понял, что если из нитей тутового шелкопряда (после соответствующей обработки) можно создать заменитель роговицы глаза, то почему бы не использовать эту же технологию для создания особого оптоволокна?

Вместе с Капланом они продумали и разработали технологию создания из шёлковых волокон оптических материалов, которые стали основой для различных биологических сенсоров и прочих устройств.

Почему же предпочтение отдаётся именно шёлку? Во-первых, потому что его волокна одни из самых прочных (среди натуральных материалов). Кроме того, белки этого природного продукта растворяются в теле человека без каких-либо последствий для его здоровья.

Создание устройств на основе шёлка не требует обработки исходного продукта едкими и ядовитыми химическими соединениями, нет необходимости использовать высокие температуры (как в случае со стеклом и различными пластиками).

Как следствие, в процессе обработки к белкам шёлка можно "пришить" другие биологические молекулы, которые не выжили бы в агрессивной среде.

Такие встроенные вещества могли бы работать годами. Хотя, конечно же, всё зависит от конкретных свойств и "долголетия" того или иного соединения, ведь в любом живом организме идёт постоянное обновления клеток и материалов в связи с их биологическим изнашиванием.

В ходе своих исследований Фьоренцо выяснил, что при всём при этом работают "шёлковые" имплантаты не хуже, а то и лучше своих искусственных аналогов.

О том, как именно в лаборатории Оменетто создают природное оптическое волокно, рассказывает ведущий технолог Кармен Преда (Carmen Preda).

Чтобы довести шёлковые волокна до необходимого состояния, проводится несколько этапов обработки нити, созданной гусеницей тутового шелкопряда (Bombyx mori).

Сначала коконы разрезаются напополам, затем оттуда удаляется мёртвая личинка. Половинки варятся в растворе карбоната натрия (щелочная среда). Делается это, дабы растворился серицин, белковый компонент, склеивающий шёлковое волокно в кокон. Это вещество удаляют не столько для того, чтобы "размотать" нить, сколько из-за неблагоприятных последствий действия серицина на человеческий организм (вызывает нежелательные реакции со стороны иммунной системы).

После того как волокна высыхают, их растворяют в бромиде лития, затем охлаждают и с помощью шприца закачивают в специальные картриджи, обычно используемые для диализа. Пакеты помешают в стакан с водой (таким образом химики "вытягивают" из раствора соль – уходит через полупроницаемую мембрану картриджа).

В результате всех этих операций внутри контейнера остаётся чистый вязкий раствор фиброина, очищенного белка шёлка. Этот материал и становится основой для будущих разработок Оменетто.

Сама по себе технология получения фиброина не нова, её в том или ином виде часто используют для получения из белка шёлковых волокон аминокислоты тирозина (её по сравнению с другими аминокислотами в фиброине существенно больше).

Новизна данного исследования в том, какое применение протеину шёлка придумали американские исследователи.

Для Фьоренцо сиропообразную жидкость распределяют по пробиркам. Чтобы создать оптический биосенсор, Оменетто добавляет к фиброину необходимые чувствительные к тому или иному компоненту вещества. "К этому водному раствору легко подмешать любое растворимое в воде соединение", — говорит учёный.

Работает всё очень просто. Волокно со встроенной молекулой (детектором кислорода, сахаров или протеинов бактерий) меняет свою структуру, если в непосредственной близости от неё появляется соединение-цель. В результате меняются физические свойства материала сенсора, а именно характеристики проходящего через него света (в частности, цвет). Датчик фиксирует изменения и интерпретирует их в данные о соединении-цели.

Простейший пример: чувствительный к кислороду гемоглобин. Захватывая восьмой химический элемент, он будет менять оптические характеристики волокна.

Точно так же в живом организме гемоглобин меняет цвет крови, цикл за циклом захватывая и отдавая кислород (различия артериальной и венозной крови видны даже невооружённым глазом).

Впрочем, с разрабатываемыми биологическими сенсорами всё несколько сложнее. Заметить изменения на глаз удаётся очень редко (да это и не нужно, так как достоверный результат всё равно требует точных измерений и расчётов).

Отметим, что гемоглобин – достаточно стабильный белок, что, несомненно, упрощает работу с ним. Однако биохимикам удалось сохранить активность и других, более "нежных" соединений – ферментов.

В качестве показательного эксперимента группа Оменетто встроила в волокна фиброина летучее соединение пероксидазу, получаемое из растений хрена (Armor&覙cia) и часто используемое в различных тестах. Затем хороший результат был получен и с гексокиназой (энзимом, связывающим сахара).

Биохимики работают над увеличением эффективности поглощения соединений-целей (по сути чувствительности сенсоров).

В будущем новую разработку планируют использовать в качестве имплантируемых биодеградирующих сенсоров, которые смогут контролировать состояние пациентов, перенёсших операцию или же имеющих хронические заболевания, например диабет (сенсор на глюкозу).

Однако для того чтобы создать работающее устройство, мало просто дополнить фиброин чувствительными молекулами. Необходимо создать из материала матрицу, имеющую наноразмерные элементы. Это важно для работы будущего сенсора, ведь свет начнёт взаимодействовать с волокном только при условии соразмерности составляющих с длиной волны (для видимого света это диапазон в пределах 400-700 нанометров).

Чтобы продемонстрировать оптические свойства шёлкового белка (как мы уже сказали, мало чем отличающегося от других оптических материалов), учёные создали матрицы с гемоглобином.

При помощи обычной химической пипетки раствор разливается в специальные формы, после его оставляют высыхать при комнатной температуре в течение восьми часов. Затем полученные заготовки осторожно вынимают из формы щипцами.

Получаются простейшие сенсоры кислорода. По мере поглощения этого элемента из капли крови, нанесённой одним из учёных, пластинка меняет цвет. Как следствие, меняются характеристики проходящего сквозь сенсор света. Их регистрирует фотодиод.

Ловить можно и глюкозу, и маркеры онкологических заболеваний, и продукты, выдающие присутствие определённых бактерий.

Однако результатом всей этой работы станут не только лабораторные чувствительные элементы. Оменетто уже создал устройство, которое перенаправляет свет от поверхности кожи к сенсору и обратно, где его показатели считывает фотодетектор.

Такие структуры можно будет вживлять после операций по удалению опухолей (мониторинг развития осложнений и повторного развития патологических процессов), во время трансплантации органов и тканей (для контроля над приживаемостью). Со временем сенсоры растворятся в организме, как хирургические нити и создаваемые Капланом каркасы биологических тканей.

В планах учёных создание сенсоров с более радикальной сменой цвета (заметной невооружённым глазом). На разработку таких устройств Фьоренцо вдохновили бабочки морфиды, у которых цвет крыльев определяется не пигментацией, а структурой микроскопических белковых палочек. Под действием молекулы-цели менялись бы положение наноструктур и общий цвет сенсора.

По словам Оменетто, данная разработка – лишь вопрос времени, так как единственное препятствие на пути к таким более информативным сенсорам – это создание подходящих форм-заготовок.

Источник : www.membrana.ru

Ещё в разделе

Наночастицы, доставляющие лекарства, могут убивать раковые клетки

Наночастицы, доставляющие лекарства, могут убивать раковые клетки

Исследователи из Пенсильвании сообщают, что им впервые удалось осуществить эксперимент, в результате которого наночастицы 1/5,000 диаметра человеческого волоса, инкапсулированные в экспериментальный противоопухолевый препарат, убили клетки

Съедобная электроника следит за усваиванием лекарств вашим организмом

Съедобная электроника следит за усваиванием лекарств вашим организмом

Через несколько лет проглатывание пилюли может стать не просто приёмом лекарства с последующей надеждой, что оно работает.

Ученые создали

Ученые создали "бактериальное спиртовое биотопливо"

Ученым удалось создать генно-модифицированные бактерии, способные производить ненатуральные спирты, которые возможно использовать для создания практически идеального биотоплива.

Южноуральские ученые гадают по руке

Южноуральские ученые гадают по руке

Гадать по руке - с помощью высоких технологий. Южноуральские ученые разработали программу, которая предсказывает склонность человека к генетическим заболеваниям и составляет индивидуальный прогноз наследственности.

Человечество спасет ковчег с роботами, размещенный на Луне

Человечество спасет ковчег с роботами, размещенный на Луне

На Луне хотят построить так называемый «ковчег на случай апокалипсиса». Там хотят сохранить человеческие ДНК, эмбрионы и все необходимое для жизни и цивилизации. Этими ресурсами воспользуются, если Землю опустошит столкновение с гигантским астероидом, рез

Микроскопический биокомпьютер будет встроен в организм человека

Ученые предложили создавать микроскопические биокомпьютеры из ДНК, РНК и белков человека. Компьютеры будут строиться специальной генетической программой. Они смогут контролировать состояние клетки и сообщать о нем врачу, а также смогут направлять лечение

В России создан уникальный прибор для уничтожения раковых клеток

Устройство, которое способно «снайперски» уничтожать клетки рака, не повреждая здоровые ткани в организме человека, первыми в мире создали ученые Института ядерной физики Сибирского отделения РАН.

Робот-саламандра рассказал учёным про эволюцию

Оке Жан Ижспе (Auke Jan Ijspeert) и его коллеги из Швейцарского федерального политехнического института в Лозанне (&要cole Polytechnique F&覡d&覡rale de Lausanne — EPFL) построили робота-саламандру Salamandra Robotica. Но не для исследов

Сделан новый шаг к созданию искусственной сетчатки

Учеными создан первый в мире нейроинтерфейс, связывающий нейроны с пленками, содержащими фотоэлементы. Как считают исследователи, это открытие позволит в будущем сконструировать искусственную сетчатку глаза.

В Красноярске создан биополимер будущего

Красноярским ученым удалось создать материал, о котором уже много лет мечтает весь мир, особенно медики. Биопластотан – это уникальное биологическое вещество, с помощью которого можно органично восстановить сосуды, костную ткань и даже вырастить новое сер

Теперь электрический ток человек сможет вырабатывать самостоятельно

Теперь электрический ток человек сможет вырабатывать самостоятельно

Ученые из Швейцарских федеральных лабораторий материаловедения и технологий смогли создать особый материал, который дает возможность получать энергию из двигающегося человеческого тела. Электрический заряд удается получить за счет пьезоэлектрического эффекта.

В мире скоро появятся стойкие к вирусам свиньи

В мире скоро появятся стойкие к вирусам свиньи

Научные сотрудники из Рослинского института создали генетически модифицированных свиней, которые характеризуются устойчивостью к вирусам PRRSV, способным провоцировать репродуктивно-респираторный синдром.

В Мексике родился уникальный ребенок

В Мексике родился уникальный ребенок

В апреле нынешнего года в Мексике на свет появился ребенок, зачатие которого происходило с использованием митохондриальной ДНК третьего человека.

Американцы собираются оживить мозг

Американцы собираются оживить мозг

Сотрудники американской биотехнологической компании Bioquark планируют доказать, что смерть мозга не является необратимой. Для реализации задуманного биологи разработали уникальные технологии «оживления» главного человеческого органа.

Сердце свиньи и организм бабуина – могут ли они существовать вместе

Сердце свиньи и организм бабуина – могут ли они существовать вместе

Благодаря современным генетическим знаниям бабуин смог прожить 945 дней с пересаженным ему сердцем свиньи. Достигнутые результаты этого эксперимента дают возможность надеяться на успешную трансплантацию человеку органов от доноров-животных.

Криобиологи успешно провели заморозку головного мозга млекопитающего

Криобиологи успешно провели заморозку головного мозга млекопитающего

Американские биологи впервые продемонстрировали мозг кролика, который находился в стадии длительной заморозки, после чего был восстановлен. Стоит отметить, что результаты эксперимента сильно удивили ученых.

Новая методика позволит бороться с патологиями у собак

Новая методика позволит бороться с патологиями у собак

Спустя 37 лет после рождения первого ребенка, зачатого при помощи искусственного оплодотворения, на свет появились щенки, которые были зачаты точно таким же методом.

Создано самое мощное в мире сердце

Создано самое мощное в мире сердце

Ученые из Америки создали самое мощное в мире искусственное сердце. Для реализации проекта были использованы исключительно мягкие материалы. Пенообразный и высокоэластичный силикон дает возможность прокачивать достаточно большие объемы жидкости по сравнению с другими приборами.

Исследователи заставили нанорыбок двигаться

Исследователи заставили нанорыбок двигаться

Американские ученые разработали новую технологию 3D-печати микророботов в форме рыбок, которые способны передвигаться в жидкой среде.

Ученые придумали новый метод борьбы с лихорадкой денге

Ученые придумали новый метод борьбы с лихорадкой денге

Огромное количество генетически модифицированных комаров были выпущены в бразильском городе Пирасикаба. В данном случае речь идет о необычных самцах-мутантах. Все дело в том, что насекомые передают самкам ген, который провоцирует смерть личинок до достижения ими половой зрелости. К такому решению пришлось прибегнуть, так как был зафиксирован рост популяции переносчиков лихорадки денге.

Оценка:

Пока комментариев нет